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Abstract. In this paper we use the algebraic and the invariant method to study the time-dependent
damped harmonic oscillator from classical and quantum points of view. The solution of the
classical equation of motion and the wavefunction solving the time-dependent Schrödinger equation
are found explicitly. We show that the original time-dependent quantum-mechanical problem
is completely related to the well known time-independent harmonic oscillator. In addition,
we elucidate the intimate connection between the damped harmonic oscillator (DHO) and the
generalized harmonic oscillator (GHO). More importantly, the evolution of the states of the DHO
cannot be cyclic, in contradistinction with the states of the GHO. Explicit expressions for both the
dynamical and the geometric angles and phases are deduced in the adiabatic limit. The coherent
states describing the invariant-angle variables of the classical DHO are constructed; they allow us
to recover the classical evolution and invariant from the quantum evolution.

1. Introduction

In classical mechanics, the motion with friction can be described by the following Newtonian
equation:

d

dt
(mq̇) = −2γ q̇ − kq. (1.1)

The first term on the right-hand side is a dissipative frictional force proportional to velocity,
where γ is a friction constant. The second term is a conservative external force which can be
derived from a harmonic potential kq2/2.

Two cases have been considered: (a) m, k, γ > 0 are constant [1–9], and (b) γ = 0, m
and k are time dependent [10–12], from quantum or classical points of view. The general case,
which we study in this paper, has a time-dependent mass, a time-dependent friction ‘constant’
and a time-dependent ‘spring’ constant. Equation (1.1) can be obtained from the generalized
Caldirola–Kanai Hamiltonian,

H(�ν(t)) = 1

2

(
1

m(t)
e−2

∫ t

0 λ(s) ds p2 + m(t) ω2
0(t) e2

∫ t

0 λ(s) ds q2

)
(1.2)

where �ν(t) denotes the set of arbitrary time-dependent parameters m(t), λ(t) =
γ (t)/m(t), ω2

0(t) = k(t)/m(t) and q, p are the canonical coordinates. For λ = 0 we
recognize this as the Hamiltonian for a simple harmonic oscillator with time-dependent mass
and frequency. In general, the physical system described by the Hamiltonian (1.2) represents
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the motion of a particle with a time-dependent mass m(t), bound to a spring with time-
dependent Hooke ‘constant’ k(t) = m(t)ω2

0(t) and submitted to a frictional force with a
time-dependent friction ‘constant’ γ (t) = m(t)λ(t).

The interpretation of the Caldirola–Kanai Hamiltonian [1, 2] as describing damping in
quantum mechanics, has been criticized [9] because of the apparent violation of the uncertainty
principle. The uncertainty principle, in terms of the canonical momentum is always satisfied
but in terms of the kinetic momentum, it is not, in general, satisfied [13]. In this paper the
phenomenological friction ‘constant’ generalized to be time dependent can consequently be
chosen so that the uncertainty principle, in terms of the kinetic momentum, is always satisfied.

The purpose of this paper is twofold. First, we want to derive the invariant and calculate
the solution of the classical and quantum evolution of the system described by the generalized
Caldirola–Kanai Hamiltonian (1.2). We deduce, in particular, the dynamical and geometric
character of the angles and phases in the adiabatic limit. Second, we want to construct the
invariant angle coherent states [14, 15] of the damped harmonic oscillator (DHO) to get a
classical evolution from the quantum evolution expressed at the level of these coherent states
in the classical limit. Our approach is much simpler, hence it deserves attention.

This paper is organized as follows. In section 2 we derive the invariant of the generalized
damped oscillator. In section 3, we find the exact solution of the classical DHO. We obtain the
evolved wavefunction of a DHO in the quantum case, in section 4. In section 5, we introduce
the ‘invariant-angle’ coherent states [14, 15] relative to the DHO. They are characterized by a
complex number α = √

I/h̄ e−iθ the evolution of which describes the dynamics of the classical
invariant I and angle θ variables. In the concluding section, we use the adiabatic limit of the
results obtained in sections 3 and 4 to find the Hannay angle [16] and Berry phase [17] of
a DHO. We end with a comparative study between the DHO and the generalized harmonic
oscillator (GHO).

2. Derivation of classical invariant

For the construction of an exact invariant for the classical dynamical systems described by the
time-dependent Hamiltonian (1.2), we use the Lie algebraic approach, introducing the basis
T1 = p2/2, T2 = pq, T3 = q2/2 which forms a finite algebra with the following Poisson
brackets:

{T1, T2} = −2T1 {T2, T3} = −2T3 {T3, T1} = T2. (2.1)

Now, we look for the generalized invariant of the form

I =
∑
r

µr(t)Tr (2.2)

and by means of

∂I

∂t
= {I,H }qp (2.3)

and comparison of coefficients, a system of first-order linear differential equations for the
unknown µr in (2.2) is obtained

µ̇1 = −2
µ2

m
e−2

∫ t

0 λ(t
′) dt ′

µ̇2 = ω2
0mµ1e2

∫ t

0 λ(t
′) dt ′ − µ3

m
e−2

∫ t

0 λ(t
′) dt ′ (2.4)

µ̇3 = 2ω2
0mµ2e2

∫ t

0 λ(t
′) dt ′
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which can be simplified by setting

µ1(t) = σ 2(t)

m(t)
e−2

∫ t

0 λ(t
′) dt ′ (2.5)

to give

σ̈ + �2(t)σ = 1

σ 3
(2.6)

where

�2(t) = ω2
0(t) − λ2(t) −

(
ṁ(t)

m(t)

)
λ(t) − λ̇(t) − 1

2

(
m̈(t)

m(t)

)
+

1

4

(
ṁ(t)

m(t)

)2

(2.7)

which is, of course, the classical frequency. The solution to equation (2.6) is, in fact, crucial
for solving the exact classical angles and quantum phases. Thus, the invariant can be written
in the form (mq̇ = pe−2

∫ t

0 λ(t
′) dt ′)

I = 1

2
mσ 2

[(
q

σ 2

)2

+

(
q̇ +

(
λ +

ṁ

2m
− σ̇

σ

)
q

)2]
e2

∫ t

0 λ(t
′) dt ′ . (2.8)

We note that this invariant generalizes the quantity mω−1(ω2q2 + (q̇ + λq)2)e2λt , which is an
integral of motion for fixed parameters (i.e. ω0,m, λ are constants). It also coincides, in the
absence of damping, with the invariant of the harmonic oscillator with time-dependent mass
and frequency.

3. Exact solution of the classical damped oscillator

The existence of the invariant I (p, q, �µ(t)) implies that the evolution of the angle variables
can be determined by making a time-dependent canonical transformation of the phase space
variables to invariant-angle variables. Transformation to invariant-angle variables is effected
by the generating function

S
(
q, I, t

) =
∫ q

dq ′ p
(
q ′, I, t

) = −m

2
(λ + ṁ/2m − σ̇ /σ ) e2

∫ t

0 λ(t
′) dt ′q2

+I

{
cos−1

(√
m e

∫ t

0 λ(t
′) dt ′

σ
√

2I
q

)
−

√
m e

∫ t

0 λ(t
′) dt ′

σ
√

2I
q

√
1 − m e2

∫ t

0 λ(t
′) dt ′

σ 22I
q2

}
(3.1)

which gives

p = ∂S

∂q
= −

√
2Ie

∫ t

0 λ(t
′) dt ′

√
m

σ

√
1 −

√
m e2

∫ t

0 λ(t
′) dt ′

σ 22I
q2 − m

(
λ +

ṁ

2m
− σ̇

σ

)
e2

∫ t

0 λ(t
′) dt ′q

(3.2)

and

θ = ∂S

∂I
= cos−1

(√
m e

∫ t

0 λ(t
′) dt ′

σ
√

2I
q

)
(3.3)

and the new ‘Hamiltonian’

K ≡ H +
∂S

∂t
= I

σ 2
(3.4)
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where K is a function of I only, and the dynamical problem is considered to be essentially
solved.

The obtained solution θ(t), from Hamilton’s equation θ̇ = ∂K/∂I , is

θ(t) =
∫ t

0

1

σ 2(t ′)
dt ′ + θ0 (3.5)

(where θ0 is an arbitrary constant of integration). Then, the exact solution for q is

q =
√

2I

m
e− ∫ t

0 λ(t
′) dt ′σ cos

(∫ t

0

1

σ 2(t ′)
dt ′ + θ0

)
(3.6)

We observe that this solution generalizes the solution for fixed values of the parameters.

4. Exact solution: a quantum point of view

In the quantum theory of (1.2) the canonical coordinates q and p become quantum mechanical
operators q and p = −ih̄∂/∂q; the auxiliary function σ remains a c-number. The invariant
I (t), equation (2.8), is a constant Hermitian operator satisfying ∂I/∂t = ih̄[I,H ].

According to the Lewis–Riesenfeld theory [19], given a physical system that contains an
invariant operator I (t), the following results can be obtained:

(a) its eigenvalues βn are time independent,

Iψn(q, t) = βnψn(q, t) (4.1)

(b) its eigenfunctions ψn(q, t) depend on time.

Multiplied by suitable phases such as exp[iϕn(t)], the ϕn(t) verifying

h̄
dϕn(t)

dt
= 〈ψn|ih̄ ∂

∂t
− H |ψn〉 (4.2)

then, the wavefunctions #n(q, t) = exp[iϕn(t)]ψn(q, t) evolve according to the time-
dependent Schrödinger equation. The general solution can then be written as

#(q, t) =
∑
n

Cn#n(q, t) (4.3)

where the Cn are arbitrary constant coefficients fixed by the initial conditions of the physical
system.

The key point of our analysis is to perform the time-dependent unitary transformation
φn(q) = U(t)ψn(q, t), where

U(t) = V (t) U(t) = exp

(
− i

2h̄

(∫
λ(t ′) dt ′ − ln

σ√
m

)
(pq + qp)

)

× exp

(
i

2h̄
m

(
λ + ṁ/2m − σ̇ /σ

)
e2

∫ t

0 λ(t
′) dt ′ q2

)
. (4.4)

The operator I changes into I ′ = UIU−1. The operator eigenvalue equation (4.1) becomes

I ′φn(q) = 1

2

[
−h̄2 ∂2

∂q2
+ q2

]
φn(q) = βnφn(q). (4.5)

We note that the new eigenvalue problem (4.5) is a usual time-independent Schrödinger
equation for the harmonic oscillator. This fortuitous elimination of the time enables us to
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treat the original time-dependent problem by ordinary well known time-independent harmonic
oscillator theory. Thus the corresponding stationary solution φn(q) is of the form

φn(q) = (
π1/2h̄1/22nn!

)−1/2
e−q2/2h̄Hn(q/h̄

1/2). (4.6)

The constant eigenvalue βn is exactly given by βn = h̄(n + 1
2 ), n = 0, 1, . . . , and Hn is the

usual Hermite polynomials of order n. The solution ψn(q, t) = U−1 φn(q) of (4.1) is thus
given by

ψn(q, t) = m1/4 e
∫

dt λ/2

σ 1/2
exp

{
− i

2h̄
m

(
λ + ṁ/2m − σ̇ /σ

)(
qe

∫
dt λ

)2
}
φn

(
e
∫
λ dt√mq/σ

)
. (4.7)

Note that the argument of the wavefunction depends on the damping phenomena. In
equation (4.7) we have used an important property of the transformation V (t) which, when
it acts on a wavefunction in the q-representation, gives V −1(t) φn(q) = (m1/4 e

∫
dt λ/2/σ 1/2)

φn(e
∫
λ dt√mq/σ).

Now we are in a position to find the phases ϕn(t)which satisfy equation (4.2). Substituting
(4.7) into equation (4.2) and using the auxiliary equation (2.6) to eliminate ω0(t) from H , we
find

h̄ϕn(t) =
∫ t

0
dt ′ 〈φn| − 1

σ 2
I ′|φn〉 = −h̄(

n + 1
2

) ∫ t

0
dt ′

1

σ 2
. (4.8)

Thus, the evolved wavefunction of the DHO is

#n(q, t) = exp

[
−i

(
n + 1

2

) ∫ t

0
dt ′

1

σ 2

]
ψn(q, t). (4.9)

Finally, we should make some remarks. (a) In the absence of damping and when m is
constant and ω0 is time dependent, our new wavefunction reduces to that obtained in [20],
and to that of [11, 12] in the case where m and ω0 are time dependent. (b) In the presence of
damping and when m, ω0, λ > 0 are constant the wavefunction (4.7) also reduces to that of
[3, 4, 10]. However, our result is more general because it includes a time-varying mass, friction
and frequency.

5. Invariant-angle coherent states for the damped oscillator

The classical results established in sections 2 and 3 can be derived from the quantum analysis.
Indeed, as explained in [14, 15], a simple way to provide a quantum description of the evolution
of a classical system to obtain the classical evolution, is to study the evolution of ‘invariant-
angle’ coherent states which are a natural generalization of the well known coherent states of
the harmonic oscillator.

Defining the annihilation a′ and creation a′+ operators

a′ = 1

(2h̄)1/2

(
q + i

h̄

i

∂

∂q

)
a′+ = 1

(2h̄)1/2

(
q − i

h̄

i

∂

∂q

)
(5.1)

with the properties a′φn = √
nφn−1, a

′+φn = √
n + 1φn+1, and [a′, a′+] = 1, the Invariant I ′

(4.5), can be rewritten in the standard quadratic Hermitian form

I ′ = h̄
(
a′+a′ + 1

2

)
. (5.2)

As in the ordinary harmonic oscillator, the coherent states for I ′ are defined by

φα(q) = e−|α|2/2
∞∑
n=0

αn√
n!
φn(q) (5.3)
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where α = |α|e−iθ0 is a complex number. They are eigenfunctions of the lowering operator a′

with eigenvalue α,

a′φα = αφα. (5.4)

The coherent states for the generalized time-dependent DHO are now obtained from φα
by application of the unitary transformation U :

ψα(q, t) = U−1φα = e−|α|2/2
∞∑
n=0

αn√
n!
ψn(q, t). (5.5)

The eigenvalue equation (5.4) is mapped into

aψα(q, t) = αψα(q, t) (5.6)

where the transformed annihilation operator

a = U−1a′U

=
√
m

2h̄

{
e
∫

dt λ

σ
q + i

(
σ

m
e− ∫

dt λ p +
((
λ + ṁ/2 m

)
σ − σ̇

)
e
∫

dt λq

)}
(5.7)

allows us to write the invariant I in the form

I = h̄
(
a+a + 1

2

)
. (5.8)

The eigenfunctions ψα(q, t) of the lowering operator a are just the coherent states of the
generalized time-dependent DHO, obtained in terms of the eigenfunctions of the invariant I .
It is pointed out that these coherent states, constructed from the number states of the Lewis–
Riesenfeld invariant, are the squeezed states [12]. During the quantum evolution of ψα(0)
each eigenfunction ψn(q, 0) acquires the phase ϕn(t) given by (4.8). The part independent of
n of ϕn(t) brings in (5.5) a global phase factor. More interestingly, the part proportional to n

induces a change of the complex number α such that its modulus remains constant while its
argument θ0 becomes θ0 + θ(t) with

θ(t) =
∫ t

0

1

σ 2
dt ′. (5.9)

The quantum evolution of the state ψα(0) thus leads to the state

#α(t) = e− 1
2 iθ(t)ψα(t) (5.10)

and amounts, up to a global inessential phase factor, to the evolution of the complex number
α:

α → α(t) = |α| e−iθ(t) (|α(t)| = (|α| constant). (5.11)

This describes the coherent state wavepackets whose position in phase space is specified by
the shift in angle variable θ(t) associated with the invariant of the classical damped harmonic
oscillator h̄|α|2 = 〈ψα(t)|I |ψα(t)〉. However, we call them ‘invariant-angle’ coherent states
because the complex number α can be related to the classical invariant-angle variables by
α = √

I/h̄ e−iθ .
Then, deducing the expression of q in terms of the as from (5.8), one can calculate the

average value of the coordinate operator in the states ψα(t),

〈ψα(t)|q|ψα(t)〉 = 1
2 (2h̄/m)

1/2e− ∫ t

0 λ dt ′σ 〈ψα|a + a+|ψα〉

=
(

2h̄

m
|α|2

)1/2

e− ∫ t

0 λ dt ′σ cos

{
θ0 +

∫ t

0
dt ′

1

σ 2

}
(5.12)

which is exactly the solution (3.6) for a classical DHO with invariant I = h̄|α|2. We can see
that the Schrödinger property of coherent states, which give the classical motion, is satisfied
for the coherent states ψα(t).
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6. Conclusion

We now show that, in the adiabatic limit, the angle (3.5) and the phase (4.8) recover the Hannay
angle and the Berry phase [22]. The adiabatic approximation can be obtained by ignoring terms
with two or more time derivatives in equation (2.6) and taking for σ(t) the adiabatic solution
[15, 18, 21],

1

σ 2
= ω − λ

2ω

(
ṁ

m
+
λ̇

λ

)
ω =

√
ω2

0 − λ2 (6.1)

when this adiabatic expression is substituted into (3.5) or (4.8), we may obtain the total angle
(or phase) accumulated in adiabatic evolution:

θ(t) =
∫ t

0
dt ′

(
ω − λ

2ω

(
ṁ

m
+
λ̇

λ

))
(6.2)

and

ϕn(t) = −(n + 1
2 )

∫ t

0
dt ′

(
ω − λ

2ω

(
ṁ

m
+
λ̇

λ

))
(6.3)

where the first term is the dynamical angle (or phase) and the second term is the geometrical
Hannay angle (or Berry phase) [22]. In this adiabatic limit, the invariant I reduces to the
adiabatic invariant of the classical DHO [22].

It is quite striking to note that the results obtained herein are similar to the case of the well
known and extensively studied [16–18, 21–22] generalized harmonic oscillator (GHO)

HGHO = 1
2 (Z(t)P

2 + 2Y (t)PQ + X(t)Q2). (6.4)

A natural ‘mathematical’ identification between the two systems (i.e. the DHO and the GHO,
where the latter is studied in detail in [18]) can be established through a redefinition of the
parameters of the GHO,

X(t) = m(t)ω2
0(t) exp

{
2

∫ t

0
λ(s) ds

}
Y (t) = 0

Z(t) = 1

m(t)
exp

{
−2

∫ t

0
λ(s) ds

}
.

(6.5)

Because of the total correspondence between the two systems (DHO and GHO) in the non-
adiabatic case (i.e. when the parameters vary arbitrarily with time), one might be misled
into thinking that DHO is a particular case of GHO, if one takes into consideration the
aforementioned correspondence (6.5). Unfortunately, this method is not adapted in the
adiabatic case (i.e. when the parameters vary slowly with time) where the results are well
established [16, 17]. Consequently, one could think that the Berry phase for the DHO vanishes
since the parameter of the mixed term (pq + qp) does not appear in (1.2), which contradicts
the results (6.1) established in the adiabatic limit. Therefore, the identification between
the two systems would be more adequate if one makes a change of variables instead of
parameters P = pe− ∫ t

λ(t ′) dt ′ = mq̇e
∫ t

λ(t ′) dt ′ , Q = qe
∫ t

λ(t ′) dt ′ specified by the generating
function F(q, P, t) = qP e

∫ t
λ(t ′) dt ′ in the classical case, or the unitary transformation

S(t) = exp[ i
2h̄

∫ t
λ(t ′) dt ′(pq + qp)] in the quantum case. This maps the DHO Hamiltonian

onto the GHO Hamiltonian provided that one makes the following identification of the
parameters:

X(t) = m(t)ω2
0(t) Y (t) = λ(t) Z(t) = 1

m(t)
. (6.6)
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This suggests that the two systems (the DHO and the GHO) are canonically equivalent (or
unitarily equivalent).

Finally, another point to be raised has to do with the fact that in the cyclic case (i.e. when
the parameters and the auxiliary function σ(t) are periodic), the evolution of the states ψn(t)

of the damped harmonic oscillator cannot be cyclic, which is in contradiction with the states
of the GHO. Indeed, the state ψn(T ) at time T , after the parameters had described a closed
loop (taking the same values at time 0 and T ), does not differ only by a phase factor from the
initial state ψn(0), as can be seen from the action of the operator V (t) on a wavefunction φn.
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